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Abstract. Data labeling is a time intensive process. As such, many data scien-
tists use various tools to aid in the data generation and labeling process. While
these tools help automate labeling, many still require user interaction through-
out the process. Additionally, most target only a few network frameworks. Any
researchers exploringmultiple frameworksmust find additional tools or write con-
version scripts. This paper presents an automated tool for generating synthetic data
in arbitrary network formats. It uses Robot Operating System (ROS) and Gazebo,
which are common tools in the robotics community. Through ROS paradigms, it
allows extensive user customization of the simulation environment and data gen-
eration process. Additionally, a plugin-like framework allows the development of
arbitrary data format writers without the need to change the main body of code.
Using this tool, the authors were able to generate an arbitrarily large image dataset
for three unique training formats using approximately 15 min of user setup time
and a variable amount of hands-off run time, depending on the dataset size. The
source code for this data generation tool is available at https://github.com/Navy-
RISE-Lab/nn_data_collection
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1 Introduction

Data labeling is such a time intensive and tedious task that many data scientists turn
to existing datasets or outsource their data labeling process to others. However, there
are occasions where scientists may require brand new datasets due to mission needs.
Creating these custom datasets is a time-consuming process due to the time involved
with data acquisition and data labeling. The time further increases if the researchers
explore different networks or new scenarios after collecting the dataset. For example, if
researchers wish to investigate scenes with different objects, they must create and label
more data containing these new objects. Furthermore, researchers must make sure to
account for any potential statistical changes in their dataset when they add or remove
data. Often due to limited time and financial resources, researchers must be careful to
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select parameters to succinctly create their dataset. As the number of different parameters
increase, so too does the dataset size and therefore the cost as well.

Because of this, a variety of tools are available to aid with the data labeling process.
These tools assist in the labeling process with varying levels of automation. This work
introduces a new fully automated tool targeted towards the creation of data sets using
Robot Operating System (ROS) [1] and Gazebo [2], which are common tools within
the robotics community. Using ROS and Gazebo, this tool generates perfectly labeled
data from arbitrary user-specified scenes. By using common robotic toolsets, this tool
provides a familiarmeans bywhich robotics researchers can build labeled image datasets
for their work.

This tool is designed forminimal user involvement during the data generation process
and maximum flexibility. The user can specify arbitrary motion plans for various objects
in the scene, the camera position, simulated frame rate, and more. Additionally, the
tool allows the addition of arbitrary new data formats through a plugin-like structure.
This provides extensibility to new use cases not originally considered. Once configured,
the tool automatically runs without requiring user involvement, dramatically reducing
hands-on time.

The paper structure is as follows. First is an overview of other data labeling tools.
Then, the authors describe their first version of this tool, which focused on a specific
use case. Next, the paper describes the improved version of the tool. A discussion on
usability follows, including steps required by the user, information on creating new
data format writers, and a small vignette to illustrate the tool’s effectiveness. Lastly, the
authors identify several follow-on steps to further improve the tool.

Additionally, the source code for the tool described here is available at https://git
hub.com/Navy-RISE-Lab/nn_data_collection.

2 Related Work

There is a wide array of techniques used to obtain labeled data for neural network
training. These include the use of existing labeled datasets, leveraging data augmentation
techniques on unlabeled data, and manually creating and labeling new datasets. Roh
et. al. [3] provide a comprehensive overview of the various techniques. Many current
techniques use existing datasets for training. However, there are cases where a project
requires the creation of a new dataset through manual image labeling.

The traditional way to create labeled datasets involvesmanually labeling each image.
There are several tools, such as Yolo_mark [4] and LabelImg [5], that assist a user with
labeling. These tools typically provide user interfaces to aid in quickly drawing bounding
boxes and assigning labels to an image. The tools thenwrite the labels to file in a specified
format. While these tools speed up the data labeling process, they still require the user
to draw the boxes and assign the labels or require user confirmation that an automated
guess is correct. Depending on the size of the dataset, labeling can be a laborious process.
For example, the authors used Yolo_mark to label a video approximately a minute and
a half in length in about three hours. The process can also introduce human error into
the dataset if an image is accidentally mislabeled. Ideally, multiple people will label
each image; however, having multiple people label each image significantly increases
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the amount of time and money involved in creating the dataset. Additionally, these tools
typically target only one or a few networks. Extending datasets to additional networks
in the worst case can be impossible without relabeling missing data, and in the best case
requires deep knowledge of the tool’s code or a post-processing conversion script.

There is also a growing body of research on using neural networks to create and
label data for training and testing other neural networks. Sixt et al. [6] and Pfeiffer et al.
[7] both use generative adversarial networks (GANs) to take ideal 3D models of objects
of interest and place them into realistic synthetic images. They use example images to
mimic the lighting conditions, blur, and other characteristics. Similarly, Lee et al. [8]
use a neural network to perform style transfer. These approaches allow for automatically
generating large datasets. However, the examples the authors found were limited to
single objects found within an image and focused on image labels instead of multiple
objects within an image.

Besginow et al. [9] propose an alternative approach that generates labeled data for a
single object. They use a hardware setup to capture an object frommultiple angles. They
also supply simple interfaces to allow some user customization for a semi-automated
approach. The tool then generates the object detection labels. However, this approach
is limited to objects that fit within the hardware setup. Additionally, they only target a
single network output format.

Additionally, Dutta et al. [10] provide an overview of a number of automatic label-
ing methods that leverage machine learning techniques. This includes nearest neigh-
bor approaches, neural network approaches, and SVM classifiers. The nearest neighbor
approaches use already labeled images to match based on visual similarity. This requires
a sufficiently diverse collection of labeled images, which may not exist for new datasets.
All approaches also potentially result in some mislabeling, depending on the accuracy
of the model used.

Some researchers have also begun to use other sensor modalities to automatically
label training data. Kuhner et al. [11] propose the use of LiDAR in driverless cars to
automatically create semantic labels for the image data generated by the car’s cameras.
Their approach quickly annotates images of roads and curbs for use in training neural
networks used to detect and navigate around these objects. This approach offers fast
generation of labeled real world data but does not generalize to other problem domains.

Lastly, the authors were unable to find any examples of data generation tools using
ROS and Gazebo for scene simulation. Some synthetic generation methods use general
purpose simulation environments. For example, Lee et al. [8] use the 3D game engine
Unity to generate synthetic training data of wrenches in an industrial environment.
Others, like the LGSVL simulator [12], are domain specific.

3 Version 1

The first version of this utility originated in a previous project that used YOLOv3 [13]
and the Darknet [14] framework. Part of that project explored the impact of several
setup parameters, such as image resolution, on network accuracy. This required multiple
datasets composed of several simulated robots in arbitrary poses within a simulated
environment. Performing this labeling by hand was too time consuming. To speed this
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up, the team created a ROS package that automatically generated the necessary data
in the correct format. By using perfect knowledge of the simulated world, the labels
are guaranteed to be accurate. Additionally, the automatic nature of the tool means the
authors could run the tool during off hours without the extensive time commitment
needed to hand label the data.

The general algorithm is below. The project focused on object detectionwithin single
images, so the algorithmuses the entire available spacewithin the simulated environment
for robot placement. Additionally, because of the authors’ familiarity, they chose to write
this version of the tool in C++.

Version 1 Procedure:
Load user parameters
For each required datapoint:
image <- capture new image
Write to file(image)
For each object:
selected_pixel <- select pixel from map pixels (1)
If selected_pixel is not free:
GOTO (1)

radius <- load user specified safety radius
outer_pixels <- Bresenham’s Circle Algorithm(selected_pixel,

radius)
For each outer_pixel in outer_pixels:
line_pixels <- Bresenham’s Line Algorithm(selected_pixel,

outer_pixel)
For each line_pixel in line_pixels:
If line_pixel is not free:
GOTO (1)

position <- transform selected_pixel to coordinate
orientation <- select value from (-pi, pi]
Move object in simulation(position, orientation)
bounding_rectangle <- Project Shape into Image
Write to label file(bounding_rectangle, class id)

To execute the program, the user first specifies several settings via ROS’s parameter
server, which is a standard way to customize routines in ROS. Specifically, this includes
information about where to save files, which robots to use, and each robot’s footprint,
height, and a safety radius that ensures no accidental collisions during object placement.
Additionally, the user must publish a map of the environment indicating which areas
are free or occupied. This map also follows a standard ROS convention and uses pixel
values to indicate if a space’s occupancy status. After providing this information and
starting the simulation environment, the user can then run the generation utility and let
it auto-generate until finished.

While running, the tool selects a random pose for the robot. To do this, it picks a
free pixel on the map, then uses the robot’s safety radius, Bresenham’s Line drawing
algorithm [15], and Bresenham’s Circle drawing algorithm [16] to identify if the robot
can fit at the selected spot. The drawing algorithms identify which pixels the robot could
potentially occupy for a given pose. It then checks if each pixel is already occupied or
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not. If any pixel is occupied, the algorithm selects a new position, and the process begins
again. If the space is free, the algorithm selects a random orientation for the robot. The
algorithm then requests Gazebo to move the robot to that pose. This process then repeats
for each robot.

After each robot is in position, the tool captures the image data from a simulated cam-
era within the environment, using ROS’s publisher/subscriber model. When capturing
the image, it also captures the camera information, such as its intrinsic parameters.

Using this information, the tool then generates the labels using the algorithm shown
below. It uses the robot’s pose and its user-specified shape to construct a rectangular
cuboid that circumscribes the robot in the robot’s frame of reference. It then transforms
the vertices of this cuboid into the image using known positional data and the camera’s
parameters. Next, it circumscribes a bounding box around the projected vertices using
OpenCV [17]. Because these are vertices of a bounding shape, this bounding box is
guaranteed to encompass the robot on the image. As proof, consider the case where
the object has some feature outside of the bounding rectangle on the image. If this is
true, then the vertices projected on the image would also extend outside the rectangle,
as the vertices circumscribe the object in 3D space. However, the bounding rectangle
is constructed to circumscribe all the projected vertices, which contradicts the original
premise of this case. Therefore, this bounding box on the image contains the entire robot
within it.

Project Shape into Image(object):
vertices <- load user specified object shape
transform <- lookup transform to camera frame(object)
projected_vertices <- apply transform(vertices, trans

form)
camera_matrix <- lookup camera parameters
projected_points <- apply camera projection(projected_vertices,
camera_matrix)
bounding_rectangle <- OpenCV.BoundingRect(projected_

points)
Return bounding_rectangle

Lastly, the tool writes the values to file in the correct format. Darknet datasets consist
of two elements. The first is the set of raw, unlabeled images. The second element is
an associated text file for each image. Each line of the text file contains the information
for one object within the image. This information includes the class id for the class of
the object, and the size and location of the bounding box, expressed as fractions of the
overall width and height of the image. For example, a bounding box highlighting an
object with class id 1, centered on the image with width and height one quarter of the
respective width and height for the image would be labeled as “1 0.5 0.5 0.25 0.25”.

This entire process can then repeat until the tool creates the desired amount of data.
Additionally, the user can easily rerun the process with new settings to create validation
or test datasets, or to explore new scenarios. Rerunning takes no added user input other
than the time required to change settings.

Using this method, the authors were able to generate a fully labeled 1,000 image
synthetic dataset with about 10 min of setup time and 30 min of data generation time.
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The setup time is the only time that requires user operation and does not increase as the
size of the generated dataset increases. The data generation time runs without the user
and scales approximately linearly with the number of samples. Once generated, the data
was immediately used for network training without any additional post-processing. This
allowed the team to quickly explore several elements to the project without spending
work time on data creation.

However, there are some drawbacks to this tool. As mentioned previously, the algo-
rithm targets the Darknet format and design considerations, such as moving the robot to
arbitrary positions on the map, were made because of it. Any new format would require
extensive rewrites. Additionally, there are several required dependencies for the package
to work. While some are standard ROS packages found in any ROS installation, some
dependencies are less common. Some were even lab specific ROS packages, preventing
widespread use of this tool. When the main project began work on a second phase, it
became clear that the team required a tool with greater flexibility.

4 Version 2

After completion of the first phase of the project, the underlying research expanded
to include improved neural network methods. This included new network types, more
detailed detection, and the use of video data instead of isolated images. Adapting the
existing synthetic generation tool would require significant work. Therefore, the team
took the opportunity to redesign the tool to promote greater modularity and reduce the
need for future rewrites. The four primary goals for this version were as follows.

• Allow the user to specify and label video frames and sequential images to capture
motion between images.

• Use a modular structure to allow the easy creation of new data formats as needed.
• Generate data to train instance segmentation networks.
• Reduce the required dependencies to run the tool, ideally to only a few that are likely
to already exist on a computer with ROS and neural network frameworks installed.

Additionally, the team decided to rewrite the entire package in Python. Python is a
primary language amongst both data scientists and ROS users, so any potential users are
more likely to be familiar with Python than they would be with C++.

4.1 Motion Generation

The first version of the generation tool created sets of unrelated images, so the toolmoved
objects to arbitrary locations at each successive image it generated. The later stage of
the project relies on video data fed in as successive frames to exploit state information
between images. Therefore, the tool needs to generate data the shows an object’s motion
across a series of images. To support modularity, this requires the ability to specify any
possible motion path in an intuitive way, to allow the exploration of a variety of motion
scenarios.
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Achieving this flexibility uses a built-in capability of ROS. ROS uses packages called
tf and tf2 [18] to track relative pose information between every frame of reference in the
scene throughout the entire simulation. This structure is called the TF tree. Additionally,
ROS supplies a way to record any information published during simulation using a
concept known as bag files. Bag files are a common means by which researchers record
their experiments for use later. The algorithm simply reads and stores a TF tree from a
pre-recorded bag file to generate a record of each objects pose throughout the simulation.

To generate this bag file, the user can use whatever methods they want. They can use
real or simulated robots, joystick control or autonomous control, or any other means. As
TF trees are extremely common inROS robotic simulations,most setups already produce
the required information, so it is a simple matter to record the data. Additionally, trees
are represented as text information, so the file size is small, even for large simulations.

When run, the algorithm reads in the TF tree from the bag file and uses it as a set
of instructions to recreate the scene. It follows the algorithm shown below. Using a user
specified frame rate, the algorithm steps through the scene and finds the pose of each
object at thatmoment in time, based on theTF tree. It thenmoves the objects to those same
poses in the Gazebo simulation, recreating the recorded scene. It is important to note that
this recreation does not have to occur in real time. Since the bag file contains the positions
for the entire simulation, the algorithm can spend as much time processing information
as needed beforemoving on to the next frame, similar to the use of Claymation inmovies.

Scene Generation Procedure:
Load bag file
start_time <- identify valid start time from bag file
end_time <- identify valid end time from bag file
frame_rate <- load user specified frame rate
current_time <- start_time
While current_time <- end_time:
For each object to control:

pose <- lookup object pose in bag file
move object in simulation(pose)

scene_data <- Capture all scene data
For each format writer:

format_writer.WriteScene(scene_data)
current_time <- current_time + (1.0 / frame_rate)

An added user benefit of this approach is the ability to create new scenes.When recre-
ating a frame using the TF tree, the algorithm does not care about the visual appearance
of the object nor the position of the simulated camera. This means a user can create a
single motion plan, then generate data for several different setups. These alternate setups
can include different environments, lighting, and camera positions. Alternate setups can
also include new types of objects following the same motion paths. The algorithm is
agnostic to each and does not require an updated bag file. For instance, the authors devel-
oped some example data in an empty environment, then used the same motion plan in an
environment with walls and a new camera position. The authors did not need to change
the recorded bag file, so created new datasets without any significant user involvement.
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This motion recording framework provides a robust means to create motion scenes.
The users can move objects through a scene with whatever means they typically use.
Then, by recording standard ROS published information, the algorithm has enough data
to recreate these scenes in simulation. The user can also explore different scenes using
the same recorded information without the need to modify the recorded data.

4.2 Modular Formats

Another goal for the tool is to allow arbitrary label formats. If a user desires a new
labeling scheme to support some new network, they should be able to quickly write
the specific code they need to parse the information, without concern for the rest of the
system. This increases the usefulness of the tool across a range of use cases.

To accomplish this, the package uses a plugin style scheme. Specifically, the package
defines a base class for all potential formatwriters using theAbstract BaseClasses (ABC)
library [19]. ABC enables the declaration of abstract methods that any inheriting class
must implement. Each new format writer is implemented as an inheriting class, thus
ensuring that each format writer interfaces correctly with the main algorithm. There are
three specific methods that each inheriting class must implement. The main algorithm
keeps a list of all the classes and calls the appropriate methods for each one at the correct
time.

The first called method occurs at each successive step through the scene, when
the objects are at their recorded poses for that instance in time. The complete scene
information, including object poses, the raw image, and pixels masks for each object are
all passed to the method. The method is then only responsible for extracting the specific
information the format needs and writing it to file in the correct manner.

The next is a function called at the very end of the entire execution. This allows the
format writers to perform any final steps required by the format. For instance, Dark-
net uses a main text file that contains a list of each image in the dataset. The final
abstract method is one simply used to indicate if a particular format requires instance
segmentation. As discussed later, this is only to help improve processing time.

The base class also offers two helper functions that are of use tomost formats. It offers
a method that transforms points between frames of reference and another that projects
points into an image. A common helper function avoids the need to reimplement this
transform functionality for each writer.

By defining the format writers in this manner, users can add new formats quickly and
without reprogramming the core data collection process. For example, adding a Darknet
format involves only a few steps. First, is the scene writing method. When the method
is called, the Darknet format writer uses the provided information about the objects,
including their location and vertices of bounding shapes, to transform the vertices into
the image. From there, the format writer simply determines the pixel bounding box
using these projected vertices and writes this bounding box to the right file. At the end
of the execution, the Darknet format writer then writes the main list. Because the base
class and main algorithm manages most functionality, this Darknet module is around
100 lines of code with no step more complicated than calling functions or finding an
average. Implementing this functionality took considerably less time than implementing
it in Version 1.
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Following this approach, there are currently three formats defined within the pack-
age. They are Darknet [14], a network implementation known as PVNet [20] that uses
projected keypoints, and a custom format that uses the vertices projected into an arbitrary
frame of reference.

By using this modular format structure, users can easily add additional formats
without unnecessary rewriting of the core functionality of data collection. This allows
users to extend this tool to new formats without the need for extensive rework.

4.3 Instance Segmentation

An entire subclass of networks performs instance segmentation on image data. This
requires labeled data that features unique identifiers for each instance of an object class
and indicates which pixels contain an object in a given image. To support labeling data
for these networks, this algorithm generates pixel masks to indicate which pixels belong
to each object. The general algorithm is as shown below. Figure 1 Shows an example
observation generated by the algorithm, along with the raw image of the scene.

Instance Segmentation Initialization:
subtractor <- OpenCV.CreateBackgroundSubtractorMOG2()
Remove all objects from scene
For a user specified number of times:
image <- capture image
subtractor.apply(image)

Return subtractor

Instance Segmentation:
If instance segmentation required:
For each object under control:
store pose
move out of camera view

For each object under control:
move back to pose
image <- capture image
mask <- subtractor.apply(image)
mask <- apply image post-processing(mask)
store mask for use by data writers
Move out of camera view

Prior to any steps in the above algorithm, the tool polls each format writer. If no
formats require instance segmentation, the tool skips this entire routine. This helps
increase processing speed by avoiding unnecessary image manipulation.

During initialization, the algorithm first creates a background subtractor. It uses
OpenCV’s Gaussian Mixture-based implementation [17]. A few of the parameters of
the subtractor can be user specified to tune performance. It then moves every object out
of view of the camera to capture background images. The algorithm collects multiple
images to account for noise. As each image is captured, the tool applies them to the
background subtractor to generate a reference background.
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Fig. 1. A sample raw image collected during the data generation process and associated pixel
mask for one of the objects in the scene. The colors of the mask are inverted for readability.

The initialized subtractor is then used during scene generation. At each step, the
tool moves all objects out of view of the camera. Then, one at a time, it moves them
back to their correct position within the scene. It then captures the image and runs it
through the background subtractor. Because the object is the only thing in the scene
besides the background, the results are a pixel mask indicating which pixels belong to
the object. This process continues for each object. After capturing each object’s pixel
mas, the algorithm then moves all objects back into the scene in their correct spots to
capture the raw image for that scene.

Right after image collection, the algorithm performs some post processing on the
pixelmasks.Using the known3Dbounding shape of the object and the correct transforms
into the image, it constructs a bounding box around each object. It then uses this box as
a filter for the pixel mask. No pixel outside of the box is set in the mask, since the box
defines a conservative outer bound on possible pixels associated with the object. This
helps reduce noise in the pixel mask.

When the tool calls each format writer to label a single scene, it provides these
generated pixel masks to the writers. Currently, layering the masks to correctly match
model occlusion in the scene remains an open question and is left to each data writer to
manage. While this is an important functionality to include in the core algorithm or data
writer base class, the authors chose to defer implementation due to project constraints as
none of the formats currently in use by the team require a layered pixel map. However,
one potential approach is to use the object’s Euclidian distance to the camera to decide
the ordering layer for the combined mask.

With this capability, the automatic generation of synthetic data can now extend to
even more types of neural networks.
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4.4 Dependencies

The last goal with the package was to limit the number of dependencies. During devel-
opment, the team carefully selected which packages to use based on what the average
ROS data scientist is likely to have installed. Table 1 shows the dependencies. Almost
all utilized packages come with the standard ROS installation and the default Python
installation. The only two that do not, OpenCV [17] and NumPy [21], are used for
background subtraction, image handling, and array manipulation. While these are not
default packages, the team felt that any researcher working with image data is likely to
already have these packages installed. By limiting these dependencies, the tool is easier
to integrate into anyone’s workflow.

Table 1. A list of dependencies required for this package. Bold dependencies do not come with
the default Python and ROS installation.

ROS packages Python packages

cv_bridge abc

gazebo_msgs cv2

geometry_msgs numpy

rosbag os

rospy

sensor_msgs

tf2_ros

5 Usability

The previously discussed goals for this tool ensure that it is straightforward to use for
anyone familiar with ROS. In general, a user will need to configure the initial setup, run
the application, wait for it to finish, then start using the results. Each step only involves
a few actions, if any, to complete. Additional steps are needed if new formats need
incorporated.

5.1 Setup

While setting up the package for a specific job is themost involved step, it is still straight-
forward. The package comes with a detailed README that walks the user through
the steps. Additionally, example files document all settings and describe their default
behavior. Customizing these settings and completing setup involves three main steps.

First, the user must generate the necessary bag file. They can do this at any time prior
to running the package. As discussed above, there are very few constraints for this bag
file. The user need only record the TF tree while they move objects in the desired motion
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patterns. This is a standard procedure for any ROS user, so most users will already be
familiar with this step.

After creating the bag file, the user must also create a simulated world in Gazebo.
While in most cases, this world will mimic the one used to generate the bag file, that is
not necessary. This environment can be as simple as an empty world or as complicated
as a realistic office setup. The user must place a camera for image capture somewhere
within the environment. They must also instantiate a number of objects representative
of the objects controlled during bag file creation. The object identifiers must match the
ones used when creating the bag file. However, visual appearances can differ.

Once the user records the bag file and has the Gazebo world is running, the last setup
step is configuring the parameters. ROS uses YAML files to configure parameters from
a single file. This is a standard way of customizing ROS packages. The package supplies
a default YAML file to use as a template. It also has documentation on each parameter,
many of which have default values if not provided. These parameters specify things such
as which bag file to use, the list of objects to control, and where to place output files.
Each data writing format may have its own parameters as well that the user can specify
in the same YAML file.

After configuration of the parameters, the data generation is ready to run.

5.2 Execution and Performance

After completing setup, the user is ready to run the program. This is a simple, one line
command to start the entire data generation process. After starting, the user need only
wait while the program executes.

Starting the program uses a ROS concept called launch files, which is a standard way
to start programs with user specified parameters. When started, the program checks the
various user specified values. It ensures that each required parameter is set and warns
the user if an optional parameter is unspecified. During execution, the package will
periodically print the percent complete to the command line to update the user. No user
interaction is required during execution.

During development, the authors measured performance of the generation tool. They
explored runtimes across different numbers of objects, collections of data writers, and
time. Figure 2 features a summary of results. Therewere two types of formats considered,
one that requires instance segmentation and one that does not. The authors measured
these results using Ubuntu’s time command on a laptop with an i9 processor and 32 GB
of memory.

As currently designed, this package is not fast. To promote modularity, some effi-
ciency was sacrificed. For example, depending on the format specifications, multiple
format writers might have to manipulate the data in the same way. The result is a run-
ning time that scales with the number of data writers. Additionally, the tool moves each
object at each iteration. This increases the running time as the number of objects increase,
as shown in Fig. 2.

The figure also shows the relative impact of performing instance segmentation. The
format that requires it grows at a faster rate as the number of robots increase. This is
due to the background subtractor. As written, it runs once for each robot in a scene.
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Fig. 2. Acomparison of runtimes across different numbers of objects and different format writers.

However, the main algorithm also queries each format writer and skips this step if not
needed, resulting in the faster execution rate seen in the figure.

While the data generation time is lengthy, it is important to note that it is fully
automated. Once the algorithm begins to collect data, no user intervention is necessary.
This is one of the primary benefits to this package.

5.3 After Generation

Once execution is complete, the user has one or several complete sets of labeled data.
This data is already in the correct format for training and can be used straight away
without further user effort required. The only limited post processing a user might need
is splitting out a test or validation set.

5.4 New Formats

When a new data format is required, the user must develop the code to write the format
correctly. Following the above-mentioned structure, the usermust implement a new class
with a few required methods. Then, the user includes this new format class in the list of
formats to call during execution. The included README documents this entire process.

To start making a new format, the user defines a new Python class. This class should
inherit the base class offeredby thepackage.Because this base class has abstractmethods,
the user must implement them and will receive an error if they do not and try to run the
code anyway.

Within this new class, the user should initialize any parameters that the format
requires. The base class already looks up the user specified output location, but the
inheriting class can expand this to include any configuration settings needed. Next, the
user implements the method called at each scene. This is the primary method used to
write data to file. Each time it is called, the method is provided a list of all objects, their
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locations, object specific information such as keypoints, and image data. This method
should use the provided information to translate positional information into appropriate
labels. It should also write the necessary label files, as dictated by the format. After that,
the user implements a final method called at the end of data generation. This provides an
opportunity for any cleanup operations or writing metainformation, such as lists of label
file locations. Lastly, the user should specify if the format requires instance segmen-
tation pixel masks. As discussed previously, this allows the main algorithm to reduce
computational time if no format requires segmentation.

After defining the class, the user then includes it in the library and list of classes
called by the algorithm. These are both single line steps. Inclusion in the library involves
importing the class into the overall data format module. Adding it to the tool involves
instantiating an object within the main program. The documentation illustrates these
steps using previous examples. After completion, the main code will automatically call
the correct methods at the appropriate time.

By creating the data writer class, defining the methods, and including it in the main
tool, the user can quickly add new data formats. Creating these new definitions does not
require changing the main code. By including this functionality, the usefulness of the
tool can continue to expand as the library of existing formats grows.

5.5 Vignette

As an example of the efficiency of the tool, consider the following anecdote. The authors
were exploring a new network. They used this tool to generate data for a simple setup
just to ensure the network was working. After creating the data, they found that the
camera placement and resolution did not have sufficient coverage of specific parts of
the scene. The authors adjusted the camera information in simulation and still used the
same settings and recorded bag file to generate new data. The entire process of creating
a new dataset took approximately 10 min of human effort compared to an estimated
1–2 h for manual labeling. The authors then repeated this process a few times with new
setups and simulated frame rates with similar levels of effort required. Additionally, the
authors explored a new type of network. The authors quickly wrote up an additional
plugin to write data for this new format. They completed the plugin and integrated it
into the existing list with the others within an hour. Data generation then proceeded as
usual. The result was a smooth data generation process that allowed the authors to spend
minimal effort to create the data and more time exploring network optimization.

6 Remaining Questions

This synthetic data generation tool is a flexible approach to generating data for a range of
neural network formats. However, there are still future improvements that would further
enhance useability. This includes increasing speed, expanding the format library, and
GUI development.

As discussed above, the algorithm suffers from poor scalability. While modularity
typically introduces some overhead, code changes can likely improve the runtime. For
example, some of the underlying algorithms can be rewritten to store and manipulate
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data more efficiently. As many routines are called multiple times, any performance gain
is likely to have significant impact on overall runtime.

Additionally, expanding the data format library increases useability. Since the tool
allows easy development of format writers, users can quickly incorporate new formats
into the available list. This has the added benefit of testing underlying assumptions on
the algorithm to ensure it is truly useable across a wide range of networks. The authors
are already exploring Mask-RNN [22] and format writers to mimic common dataset
formats, such as the Common Objects in Context (COCO) dataset [23].

Lastly, the inclusion of a GUI simplifies setup. While the current approach follows
familiar ROS conventions, a well-designed GUI offers a means to guide the user through
the setup process and address potential issues prior to running the tool. Thiswould reduce
errors and further decrease setup time.

The primary benefits of this tool are its simplicity andminimal user effort. Increasing
the runtime, adding additional formats, and developing a GUI all contribute to these
benefits and make the tool more useful.

7 Conclusion

This paper proposes an automated tool for generating annotated image training data for
various object detection networks. The proposed package is the first to use ROS and
Gazebo for the purpose of automatically generating synthetic annotated machine learn-
ing training data. Flexibility in package parameters like the simulated world, recorded
motion plans, and camera parameters allows for rapid generation of diverse datasets with
minimal effort from users. Additionally, the ability to easily add more data format plug-
ins allows users to tailor the package to their specific data generation needs. Using this
toolset, the authors created three fully annotated datasets in three separate formats with
about 15 min of manual setup and several hours of hands-off running time, depending
on the specific configuration. This package drastically reduces hands-on data collection
and labeling time while ensuring the generation of accurate data in a modular way to
allow various use cases.
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