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Abstract— Recent work has shown impressive localization
performance using only images of ground textures taken with
a downward facing monocular camera. This provides a reliable
navigation method that is robust to feature sparse environments
and challenging lighting conditions. However, these localization
methods require an existing map for comparison. Our work
aims to relax the need for a map by introducing a full simultane-
ous localization and mapping (SLAM) system. By not requiring
an existing map, setup times are minimized and the system is
more robust to changing environments. This SLAM system uses
a combination of several techniques to accomplish this. Image
keypoints are identified and projected into the ground plane.
These keypoints, visual bags of words, and several threshold
parameters are then used to identify overlapping images and
revisited areas. The system then uses robust M-estimators to
estimate the transform between robot poses with overlapping
images and revisited areas. These optimized estimates make up
the map used for navigation. We show, through experimental
data, that this system performs reliably on many ground
textures, but not all.

I. INTRODUCTION

When exploring unknown regions, robotic ground systems
frequently rely on Simultaneous Localization and Mapping
(SLAM) to map their surroundings and track their positions
through the environment. While a wide range of sensors
can be used, from lidar to vision, monocular cameras are
a popular choice due to their low cost and rich information
content.

These monocular SLAM systems frequently look out
into the world for salient features to use for navigation.
However, some environments, such as flat open spaces, lack
enough features to reliably navigate. Additionally, cameras
are sensitive to illumination changes in the environment, such
as glare from a setting sun.

In these scenarios, the only consistent source of features
comes from the surface the ground robot is traveling on.
Recent work has shown that, despite its unstructured appear-
ance, some ground textures are sufficiently distinct enough to
successfully support localization [1], [2], [3]. These methods
provide a reliable source of information, even in flat, open
spaces or other feature sparse environments. Additionally, a
downward facing camera is much more robust to illumination
changes, since it has a limited, shielded field of view.
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Here, we consider expanding upon ground texture local-
ization methods by removing the requirement for an a priori
ground texture map. Without this need, an operator can save
time on initial setup, since a complete map does not need
to be created prior to operation. This allows exploration in
previously unknown environments. Additionally, the system
becomes more robust to changes in the environment that
would differ from an a priori map. This capability is ac-
complished through the introduction of a full SLAM system.
In particular, our contributions in this systems paper are as
follows:

• To the best of our knowledge, development of the
first online ground texture SLAM system using only
a monocular camera.

• A unique algorithm within the ground texture domain
that exploits the known depth of ground texture images
when estimating the transform between overlapping
images and identifying loop closures.

• Experimental results on a recent data set showing cen-
timeter level accuracy on some textures and superior
performance across changing textures, as well as con-
sistent, accurate loop closure identification.

First, we will discuss some related works in Section II
and formulate the target problem in Section III. Then,
Section IV will detail our approach to the target problem.
Lastly, Section V will highlight supporting experimental
results. The source code for this system is available at
https://github.com/Navy-RISE-Lab/ground-texture-slam.

II. RELATED WORK

Numerous SLAM systems incorporate monocular camera
information. Some couple it with additional sensor informa-
tion, such as inertial measurement units or lidar sensors [4],
[5]. Others rely on just the camera as the only sensor. Our
work aligns with this second class of systems.

Monocular camera only SLAM systems can be grouped
into multiple categories distinguished both by the method
used to compare images and by how the maps are stored.
Image comparison generally falls into direct methods or
indirect methods. Direct methods use the pixel intensities
to compare images and include systems such as [6]. Indirect
methods use keypoints, which are salient points in the image
identified through a variety of different algorithms, such as
ORB and SIFT [7], [8]. Map storage typically includes dense
or sparse maps. Dense maps store the entire image in the
map, as in [9]. Sparse maps store a subset of information,
such as keypoint values, as in [6]. The work described in
this paper falls in the indirect-sparse category.



Fig. 1: A downward facing camera setup configured by the authors.
Note this is not the one used for gathering the experimental data
considered in this paper, but is illustrative of a typical setup.

Other indirect-sparse monocular SLAM systems include
the popular ORB-SLAM series [10], [11], [12]. In these
systems, keypoints are identified in images and their real-
world locations are estimated to use for later localization and
loop closure. Similar algorithms exist that look for domain-
specific features, such as points and lines [13], [14].

In many monocular SLAM systems, a major component of
the algorithm attempts to perform accurate depth estimation.
While images are information rich, the 2D nature loses depth
information. To account for this, monocular SLAM systems
frequently use either traditional methods for depth estimation
[15], or use machine learning [16], [17].

For systems that use the ground texture for features, the
depth estimation problem vanishes as all features are at the
same depth. However, the current state of the art is limited to
localization with an a priori map of the environment. With
these approaches, multiple images are taken of the ground
such that the entire operating area can be found in at least
one image. Then, each algorithm searches the map to find
the closest matching images.

Most of these ground texture localization methods use
keypoints and descriptors as in other monocular approaches
[1]. Micro GPS uses a voting scheme where each keypoint
votes for a closely matched image, then uses RANSAC to
estimate a transform between images [18]. [19] uses a similar
keypoint approach, but explores keypoint determination via
both a uniform distribution across the image and random
sampling without regard to image content. Lastly, [20] uses
a neural network to identify keypoints in images.

III. PROBLEM DESCRIPTION

Here, we consider a ground robot equipped only with
a downward facing, calibrated, monocular camera with in-
trinsic matrix K ∈ R3×3 and known 3D pose relative to
the robot’s origin on the ground plane. This pose can be
represented as the homogeneous matrix TRC ∈ R4×4, which
is used to transform data measured in the camera’s frame of
reference, C, into the robot’s frame of reference, R. Fig. 1
shows an example setup.

The robot travels over a planar ground surface through
several poses, x⃗t. These poses are defined in the ground plane
as the robot’s 2D pose as measured from the world or map

frame, W :

x⃗t =
(
xt yt θt

)⊤
(1)

and can be represented by the homogeneous transform
TWx⃗t

∈ R3×3. At each of these poses, the robot receives
an observation, Zt, in the form of a distortion free image of
the ground texture.

The goal is to develop an algorithm that can reliably
estimate the robot’s poses, x⃗t, for all t , using only the
observations, Z0:t, the camera calibration matrix, K, and the
pose of the camera with respect to the robot, TRC .

Note that while odometry and inertial information are
often available, this system specifically explores the ability
to accomplish this goal without extra sensor information.
Accomplishing this goal requires an approach that can
estimate relative motion between successive images, and
accurately detect previous sections of the terrain that have
been revisited.

IV. PROPOSED APPROACH

We propose an algorithm that performs SLAM in three
steps. Fig. 2 shows an outline of the proposed approach. First,
incoming images are processed. Then, successive pairs of
images are used to estimate visual-only odometry. Then, loop
closures are exploited to correct drift. Both the odometry
and loop closure steps use identified keypoints from the
image along with their associated descriptors. Additionally,
both steps estimate the transform between pairs of images
using keypoints projected into the ground plane and M-
estimators, which are robust deterministic models. Unlike
the local visual odometry, loop closure detection uses three
metrics to determine if a candidate loop closure is valid.
The transforms estimated from each step are inserted into a
factor graph that represents the map. The overall process of
the algorithm is described below.

A. Image Processing

When an image is received, it is first processed to extract
keypoints and their associated descriptions using the ORB
algorithm [7]. Then, the keypoints are converted from pixel
points to ground points. By performing this conversion,
the system can directly estimate the robot’s transform in
real-space instead of estimating the essential matrix and
converting. In most 2D to 3D projection scenarios, this
conversion is only to a scale factor of the depth. However,
because the distance between the camera and ground plane
is known, these points can be unambiguously projected. The
points are first projected from pixel values to meters, as
measured from the camera’s frame of reference using the
following equation:

zC = K−1 · zI × d . (2)

In this equation d is the distance between the camera and the
ground plane, as derived from TRC , and zI ∈ R3xN is the
collection of keypoints, in pixels, for this image, represented



Fig. 2: System structure for a single received image. There are two substructures: local odometry (blue boxes) that compares to the previous
image; loop closure (yellow boxes) that compares to almost all previous images, with thresholding (indicated by the black diamonds).
The remaining steps are either incoming data (red), general processing steps (green), or information stored between iterations (gray).

in homogeneous coordinates as follows:

zI =
[
z⃗

(0)
I z⃗

(1)
I . . . z⃗

(N)
I

]
=

x1 x2 . . . xN

y1 y2 . . . yN
1 1 . . . 1

 .

(3)
The result is a collection of 3D vectors representing the point
as measured from the camera’s frame of reference, in meters
(with some abuse of notation turning the homogeneous
representation’s 1 into the Z-component). This value can
then be projected into the robot’s frame of reference through
conversion to a 3D homogeneous representation and a simple
transformation:

zR = TRC · zC. (4)

From here, the Z components are dropped since the points
and robot’s pose are all equiplanar on the ground plane with
a Z value of 0. This results in zR as a collection of 2D
points. After projection, the original pixel-valued keypoints
are not saved. The projected keypoints and descriptors are
retained for later use.

B. Local Odometry

To conduct local odometry, projected keypoints are
matched to projected keypoints from the previous image.
Then a transform is estimated between the images.

1) Keypoint Matching: Keypoint matching identifies cor-
responding keypoints that appear in two images using their
descriptors. Our implementation uses the Fast Library for
Approximate Nearest Neighbors (FLANN) method [21].
For each keypoint in the current image, a FLANN-based
matching algorithm uses the keypoint descriptors to find two
keypoints in the previous image that have the most similar
descriptors. We use OpenCV’s implementation [22]. This
similarity is measured with a distance score, where lower
scores indicate more similarity. If the two scores differ by
a certain percentage, then the keypoints are considered to
be a match. In other words, the keypoints match if they are
significantly more similar than the next closest match. This
ratio test was introduced in [8], and is applied as follows:

match if f0 <= λ · f1 (5)

In the above inequality, f0 and f1 are the closest and second-
closest distance scores, respectively, and λ is the match
threshold, which is often set between 0.5 and 0.7 in our
method and 0.7 in the literature.

2) Transform Estimation: Matched projected keypoints
are then used in an M-Estimator factor graph to estimate the
transform between them, using GTSAM’s expression graph
feature [23]. The experiments described here use Huber,
but others are available. This factor graph estimates the
X, Y, and yaw components of the transform, Tx⃗j x⃗i

, which
represents the transform between two of the robot’s poses.
The estimated transform is the one that best fits the below
equation. Since the keypoints are projected onto the ground
plane, as described in Section IV-A, this estimation occurs
entirely in 2D real-space, offering increased efficiency over
traditional 3D SLAM methods.

zRj = Tx⃗j x⃗i
· zRi (6)

Once estimated, the transform and associated covariance are
added to the robot’s SLAM factor graph as a factor between
the current pose and previous pose. The system then proceeds
to the loop closure identification step.

C. Loop Closures

To correct for drift, the system must correctly iden-
tify previously visited ground textures. The observations at
all previously visited poses are possible candidates. Three
threshold criteria are used: visual bag of words scores, the
number of keypoint matches, and a covariance parameter.

1) Visual Bag of Words: The first threshold parameter is a
Visual Bag of Words score. Using the technique and library
described in [24], a database of previous image descriptors is
built as new observations are received. To prevent redundant
loop closures on adjacent observations, descriptors are not
added to the database until a sufficient number of subsequent
observations has been added. In other words, if the current
observation just received is Zn, the descriptors from Zn−k

are added to the database.
The database is then queried with the current observation’s

descriptors to find matches. With the settings used in this
work, returned scores from each previous observation in the
database range from 0 to 1, with 1 being a perfect match. All
results with a score above a certain threshold are considered
candidate loop closures.

The vocabulary tree used to aid in descriptor matching in
this step is assembled from the descriptors from a sample
of images taken across all textures. As described in ORB-
SLAM, this tree is general enough to work successfully on
each sequence [10].



2) Number of Keypoint Matches: Then, keypoint match-
ing is performed, as in Section IV-B.1. Any candidate loop
closures with a number of matched keypoints less than the
threshold are discarded.

3) Covariance Parameter: After discarding loop closure
candidates that do not meet the previous threshold require-
ments, the remaining candidate loop closures have their
transforms estimated as in Section IV-B.2. This procedure
returns the estimated transform and a covariance matrix.
The last threshold value is based on the covariance and is
computed as the measure of maximum uncertainty of the
estimate. The corresponding equation is as follows:

score = log10(max(eigenvalues(Σ))). (7)

In this equation, Σ ∈ R3×3 is the covariance returned by the
transform estimator.

This equation follows from the properties of eigenvalues
as measures of magnitude along principal axes, therefore the
maximum eigenvalue correlates to the maximum uncertainty.
The logarithm provides a monotonic scaling factor to make
tuning easier. Any potential loop closure greater than the
threshold value is discarded.

To be considered a valid loop closure, a given candidate
must meet all three threshold criteria. Notably, each criterion
is checked as early in the loop closure algorithm as possible.
This avoids the need for costly operations when available
information could discard a candidate.

If a candidate loop closure meets all three criteria, it is
then added to the SLAM factor graph as an additional factor
between the two poses. The graph can then be optimized
using the Levenberg-Marquardt algorithm in GTSAM and
the system proceeds to the next image [23]. This routine
repeats throughout every image received during the robot’s
operation.

V. EXPERIMENTS AND RESULTS

To validate this approach, results are conducted on the
HD Ground Texture dataset [25]. This dataset comprises
multiple different environments with multiple paths through
each environment captured with a downward facing camera
setup as described in Section III. The dataset also includes
the ground truth poses at each image. Example images from
the dataset are shown in Fig. 3. This dataset only includes
approximately planar surfaces, so the ability of this system
to work on non-planar outdoor surfaces, like hills, remains
untested.

For testing, each image is loaded from file, then input
into the SLAM system. After all images are input, the final
estimated pose at each image is compared to ground truth.
For comparison, Micro GPS is used to estimate poses for
the same sequences [18]. Micro GPS is a state-of-the-art
localization system that estimates poses by comparison to
a known map. Its default parameters are used for every
texture. While it is expected that a localization system will
outperform a SLAM system, this comparison establishes a
baseline. The mean absolute translational error for multiple
paths is shown in Fig. 4, which is grouped by the type of

(a) Bathroom Tiles (b) Checker Plate (c) Doormat

(d) Footpath Asphalt (e) Parking Place (f) Ramp Rubber

Fig. 3: Example textures from the dataset, licensed under CC BY-
SA 4.0 [25]. The dataset contains multiple texture environments.
Each texture contains multiple sequences of observations. Each
observation consists of an undistorted image and the associated
ground truth at the time the image was captured.

Fig. 4: The translational mean absolute error for different paths
and textures. Results are normalized by the total path length due to
varying length. While Micro GPS often outperforms our system, it
is a localization-only approach that needs an a priori map.

ground texture. Due to varying path lengths, accuracy is
normalized by total path length. Additionally, Fig. 5 shows
the results of one path over the one texture. This figure shows
both our full SLAM solution and a variant of our solution
without any loop closure, to indicate the effectiveness of the
loop closure at correcting drift.

Our SLAM system shows reliable performance across six
of the textures, with all reported error rates under 5 cm per
meter traveled. Other textures show almost uniformly poor
performance, indicating that characteristics of these textures
make it difficult for this system to accurately perform.
Textures with poor performance are typically caused by
difficulty in matching successive images during the local
odometry process described in Section IV-B due to insuf-
ficient keypoint matches or inclusion of outliers. The loop
closure stage is then unable to correct these errors1.

Regardless of overall system accuracy, the system shows
good loop closure identification success rates, through use of
the three threshold parameters. Fig. 6 plots threshold values

1More detailed accuracy and loop closure results available in supplemen-
tary video and https://youtu.be/lJvTLQapsrQ



Fig. 5: Example results for the Bathroom Tiles/test path1 texture
and sequence. The red dashed line indicates the results of our
SLAM system as described above. The blue dotted line indicates our
system modified to perform without any loop closure corrections.

for candidate loop closures for one of the ground textures
in the HD Ground dataset [25]. It also shows the actual real
world distance between these images and identifies which are
correct loop closures. Each threshold value, as indicated by
the red lines, accurately removes a number of candidate loop
closures. While not all correct loop closures are selected,
very few, if any, incorrect loop closures are kept. These
threshold values are determined by experimentation for each
of the textures.

Combining all three thresholds produces highly reliable
loop closure selection. Fig. 7 shows an example result, with
red lines joining each identified loop closure. Note that each
joins two nearby images without false positives. Additionally,
Fig. 8 shows a plot of the estimated distance of each selected
loop closure versus the actual distance according to the
ground truth for selected paths. In almost all cases, the
estimated distance is very close to the actual, although some
textures have outliers, including one which has been removed
for clarity. This means that the proposed system is effective
at both identifying loop closures and accurately measuring
them for use in drift correction. Fig. 5 illustrates an example
of this by showing both our system and our system without
any loop closure.

Another result of note is the performance when the texture
surface differs from when a map was created, such as
after rain. Micro GPS compares captured images to an a
priori map for localization. Between capturing the map and
capturing the images, rain changed the appearance of the
ground on select textures, resulting in poor localization, as
shown in Table I. Since our SLAM system does not use an a
priori map, it is only comparing images of textures that are
already wet, not comparing between wet and dry. This leads
to more consistent performance. However, this may not hold
true for very long duration SLAM sessions. Future work will
explore those situations.

In addition to accuracy, we also timed how long the system
ran in each sequence. Fig. 9 reports the results. It shows
the number of images in a sequence and average processing

(a) Bag of Words Scores

(b) Keypoint Matches

(c) Covariance Scores

Fig. 6: The three threshold scores for pairs of images vs. the real
world distance between those images. Only pairs of images with
low actual distance can overlap and form valid loop closures, as
shown. For (a) and (b) higher scores indicate better matches. For
(c) a lower score indicates a better match. Candidate loop closures
that do not meet the threshold are removed from consideration.

time per image within the sequence, which approximates how
fast images can be captured. These values are calculated by
running a Docker container on a Windows 10 computer with
an Intel i7 processor and 64 GB of RAM. The images are
1600 x 1200 pixels. Micro GPS values are also included for



Texture Path Normalized Translational MAE (cm/m) Rotational MAE (deg)
Our SLAM Micro GPS Our SLAM Micro GPS

Footpath Test Square test path1 5.07 0.02 12.11 0.41
Footpath Test Square test path2 1.96 0.01 5.49 0.35
Footpath Test Square test path wet1 1.10 27.07 2.56 114.68
Footpath Test Square test path wet2 2.15 24.42 5.78 107.29

Parking Place regular test pp2 201010 1.62 46.80 7.22 71.83
Parking Place regular test pp2 210225 clean slightly wet 6.60 24.73 19.14 30.21
Parking Place regular test pp4 210225 slightly wet 2.17 4.58 13.68 11.73

TABLE I: A comparison of translational mean absolute error (MAE), normalized by overall path length, and rotational MAE between
our SLAM system and Micro GPS [18]. Sequences shown are highlighted because of changing appearance due to environmental effects.

Fig. 7: The loop closures, shown in red, identified during a
representative trajectory, with robot poses shown in blue.

Fig. 8: A plot of various estimated transforms between valid loop
closure images pairs. One path from each texture is used for clarity.
A y=x line indicating the ideal result is shown for reference.

reference, but do not include the time required to collect and
pre-process map data. This map-building time represents a
significant duration beyond just runtime that our method does
not require.

Notably, our system shows faster performance for the
sequences tested due to the rapid candidate loop closure
threshold evaluation. However, the data suggests longer se-
quences may prove unwieldy due to increasing times. Future
work will look at map pruning to reduce time.

With both reliable accuracy and fast operating time, the
proposed SLAM system provides an effective means of
navigation over varied ground textures. Future work aims
to realize a system that is more generalizable across a broad

Fig. 9: A plot of the processing speed of our full SLAM system
and the Micro GPS localization system for various sequences.

range of textures, is robust to environmental changes during
multi-session SLAM, and is fast for long duration sessions.

VI. CONCLUSIONS

We have presented an innovative ground texture SLAM
system that operates using only a calibrated, downward
facing monocular camera. This system is the first to offer
full online SLAM capabilities in the ground texture domain
without the need for an existing map. When receiving a new
image, it detects keypoints in the image and projects them
onto the ground plane using known information about the
camera position. It then uses robust M-estimator methods
to estimate the ground plane 2D transforms experienced
by the robot between pairs of images. Loop closures use
three threshold values to identify revisited areas to improve
overall accuracy. We have presented experimental results
showing reliable performance on various ground textures
and identified several that require further study to support.
We have also shown accurate loop closure identification.
When operating on acceptable textures, this system provides
a means to rapidly set up robot navigation without the need
to provide an a priori map.
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