
RoSCAR: Robot Stock Car Autonomous Racing

Kyle Hart‡, Corey Montella†, Georges Petitpas†, Dylan Schweisinger†,
Armon Shariati†, Ben Sourbeer†, Tyler Trephan†, and John Spletzer†

Lehigh University
†Department of Computer Science and Engineering

‡Department of Mechanical Engineering

ABSTRACT
In this paper, we present the development of a low-cost,
high-performance mobile robot platform for educational and
research use called RoSCAR. The platform is based on a
1/10-scale short track race car, integrated with an on-board
desktop-class computer, odometry, and RGB-D sensing. As
part of an experimental robotics course, three student teams
used RoSCAR to compete in a race around a 200 m indoor
track. Students demonstrated reliable lane tracking and at-
tained average lap speeds of up to 5.7 m/s (equivalent to
202 km/h at full scale). We are currently investigating the
viability of a regional robotics competition centered around
this concept.

1. INTRODUCTION
Robotics is currently an active area in education, with a

wide variety of educational robotics hardware, courses, and
competitions designed to engage students and get them in-
terested in various STEM fields. Unfortunately, many ed-
ucational robotics competitions lack a focus on advanced
concepts in robot algorithms, such as closed loop control or
3D perception [1].

For instance, the most popular robotics competition at
the high school level is the For Inspiration and Recognition
of Science and Technology (FIRST) Robotics Competition,
which involves no perception and limited autonomous con-
trol [2]. A majority of the competition is performed via
tele-operation. At the undergraduate level, the Brown IEEE
Robotics Olympiad entails the design and construction of a
maze following robot, which requires limited perception but
little opportunity to explore advanced control concepts [3].
The Trinity College Fire Fighting Home Robot Contest faces
the same shortcoming; competitors build robots to navigate
a maze to find and extinguish a flame [4].

A common thread in the aforementioned competitions is
that the competitors design and build both robot hardware
and software for the competition. We propose that a com-
mon, high-performance platform available to all teams shifts

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MARS’14, June 16, 2014, Bretton Woods, New Hampshire, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2823-4/14/06 ...$15.00.
http://dx.doi.org/10.1145/2609829.2609837.

Figure 1: Three RoSCAR platforms pictured with
and without shell attached. The only external dis-
tinguishing feature is the RGB-D sensor mounted
on the roof (left and right cars). Internally, a mini-
ITX x86 computer is mounted to the chassis, along
with servo control, encoder, and multiplexer hard-
ware (center car).

focus to advanced algorithm development. To this end, we
designed a high-speed mobile robot platform called RoSCAR
for research and educational use, pictured in Figure 1. The
RoSCAR platform surpassed our expectations with respect
to robustness and was remarkably agile, with a maximum
speed 16.7 m/s. We believe that this platform could be
the basis for a new robot racing competition focused on the
design of algorithms for high speed control and advanced
perception.

The most popular robot platform for research and edu-
cation is the iRobot Create [5]. The Create is a low-cost
robot platform featuring differential drive locomotion, na-
tive odometry, a bump sensor, and an expansion port for
an on-board computer. Users need only provide a laptop
and sensor suite. The Create is used by hobbyists, teachers,
and researchers, with plenty of accessories and open source
software available (see the original Turtle Bot [6]).

Despite its success, the Create platform has its drawbacks,
the most significant of which being its slow maximum linear
speed (0.5 m/s) and that operation is limited to flat terrain.
Addressing the limitations of the Create and incorporating
additional functionality, are several other platforms such as
the MARS Clodbuster [7], a fairly older platform developed
by the University of Pennsylvania; and COMET [8], a multi-
vehicle platform developed by the University of New Mexico.

In this paper, we describe the design and development of
the RoSCAR platform. In Section 2 we describe the hard-
ware architecture, including the chassis, on-board computer,
and sensing suite. In Section 3, we discuss the software ar-
chitecture. In Section 4, we put RoSCAR to the test, and de-

3

Figure 2: Assembled RoSCAR platform. The mini-ITX motherboard supports a Intel Core i3 processor,
4GB of RAM, and 32GB of solid state storage (mounted underneath the motherboard). The platform is
completed with a decorative shell.

scribe the results of an experimental course using RoSCAR,
taught in the Fall semester of 2013. We conclude by dis-
cussing future directions in Section 5.

2. HARDWARE ARCHITECTURE
RoSCAR is based on a short-track 1/10 RC Traxxas stock

car. Mounted on the frame of the car is a mini-ITX PC
which ultimately is responsible for control in its autonomous
mode. In this section we will detail modifications made to
the base platform, as well as the computing and sensing
hardware that brought RoSCAR to life.

2.1 Chassis
The RoSCAR platform is a modified version of the Traxxas

Slash 2WD 1/10-scale RC car [9]. To support our on-board
computing platform, we added an aluminum mounting plate,
which required the relocation of the radio receiver, speed
controller, and motor battery mount. The base plate is
large enough for mounting the on-board computing hard-
ware, computer battery, servo controller, multiplexer, and
encoder board. Figure 2 depicts the assembled RoSCAR
platform with call-outs indicating the aforementioned com-
ponents. Further components not visible in Figure 2 are the
motor battery, which is located on the underside of the plat-
form; and the solid state hard drive, which is located under
the motherboard. The base platform was further modified
with the addition of upgraded shocks, rated at 1155 N/m to
account for the increased payload.

RoSCAR can operate under two modes: training mode
and standard mode. In training mode, speed is capped at

half the maximum operating speed. Figure 3 depicts the per-
formance of the RoSCAR platform in training and standard
modes for a straight drag race. For the purpose of obtain-
ing this comparison, we did not optimize acceleration, but
instead were only interested in estimating the top speed in
each mode. In training mode (blue line) RoSCAR achieved
a top speed of 8 m/s. In standard mode, this is increased

Figure 3: Drag race performance of the RoSCAR
platform. Under training mode (blue), RoSCAR at-
tained a peak speed of 8 m/s. On standard mode
(red), the peak speed was 16.75 m/s.

4

Part Description Vendor Cost
Base Platform

Chassis w/ Battery Traxxas Slash Pro 2WD Short-Course Truck towerhobbies.com $207.00
Transmitter FlySky FS-GT2B 2.4GHz 3-Channel Transmitter amazon.com $36.64
Encoder Disk DISK-2-1024-441-NE US Digital $15.08
Encoder Head EM1-2-1024-N US Digital $41.80
USB Encoder Board 1057 2 Phidget Encoder High Speed Phidgets $60.00
Servo Controller Pololu Micro Maestro 6-Channel USB Servo Controller Pololu $19.95
Multiplexer Cytron 8-Channel RC RX Multiplexer robotshop.com $12.90

Subtotal $393.37
On-Board Computing

Motherboard Gigabyte GA-H61N-USB3 Mini ITX Motherboard newegg.com $76.99
Processor Intel Core i3-3220T Dual Core Processor 2.8 GHz amazon.com $127.98
Memory Kingston HyperX Blu 4GB 1333MHz DDR3 CL9 DIMM amazon.com $34.24
Storage Sandisk ReadyCache 32 GB SSD amazon.com $44.60
USB Wi-Fi Adapter Panda Ultra WiFi Wireless-N 2.4Ghz Adapter amazon.com $10.99
Power Converter PicoPSU-90 Cyncronix 90W 12V DC-DC ATX mini-ITX amazon.com $29.95
Battery Venom LiPo 3S 11.1V 5400mAh 20C towerhobbies.com $61.99

Subtotal $386.74
RGB-D Sensor Asus XtionPro Live RGB and Depth Sensor newegg.com $169.99

Total $950.10

Table 1: RoSCAR parts list, vendor, and current pricing (as of April 2014). Costs are divided by the base
RoSCAR platform, which and the computing platform, which is roughly equivalent to the cost of a netbook
computer.

to almost 17 m/s (red line). By way of comparison, the top
speed of the iRobot Create is indicated at 0.5 m/s (black
line).

2.2 On-board Computer
Our choice of a mini-ITX x86 computing platform was

motivated by several factors. First, mini-ITX is the smallest
form factor available with mainstream component support.
This makes it low cost, and components such as the proces-
sor, memory modules, and primary storage can be upgraded
with readily-available commodity hardware. Second, as we
will discuss in Section 3, the choice of MATLAB as a devel-
opment platform necessitated an x86 processor architecture.
Third, Intel offers an energy-friendly Core i3-3220T proces-
sor, which at 35 W TDP, balances our requirements of long
battery life and fast performance for point-cloud processing.
This processor allowed our platform to operate for nearly
one hour at full load powered by a 48 Wh battery. Our
computing platform used a single module of 4 GB DDR3
RAM, and a 32 GB solid state disk for mass storage. A
compact USB Wi-Fi adapter was used to establish an ad-
hoc wireless network between the on-board computer and
development computers.

Several daughter boards were also necessary for interfac-
ing with our sensors and servos. A Phidgets 1057 2 high-
speed encoder board was used to read data from the encoder.
Both the front and rear servos were controlled by the Pololu
Micro Maestro 6-channel USB servo controller. The elec-
tronic speed controller (ESC) that was removed from the
chassis previously was later mounted on top of the plate.
Finally, a Cytron 8-channel RC RX multiplexer was added
for both convenience and safety. The multiplexer toggled
servo input between the Maestro controller and a wireless
receiver which was paired to wireless transmitter for man-
ual control. The servo input was switched from one input

to another when the user pressed a button on the wireless
transmitter. This way, if a RoSCAR was ever about to crash,
go off course, or just needed to be driven to a specific loca-
tion, the user could toggle the button on the transmitter
and manually control the car.

2.3 Proprioceptive Sensing
Our main proprioceptive sensor was an encoder disk se-

cured on the rear axle of the car. The encoder disk is 2
inches in outer diameter, with an inner diameter of 0.441
inches and 1024 counts per revolution. In order to mount
the encoder disk in this location, it first needed to be mod-
ified with three holes for mounting. Then we used a set of
screws to attach the disk hub, the encoder disk, and the disk
cover to a gear. The encoder head was attached to a plate
which was then screwed onto the differential box.

We used only one encoder and it was placed in the middle
of the axle, providing us with the average angular velocity
of both wheels. This information was used to estimate lin-
ear velocity of the RoSCAR. We currently do not have the
capability to estimate angular velocity. However, we are ex-
ploring the possibility of mounting a low cost gyroscope to
the platform.

2.4 Exteroceptive Sensing
Exteroceptive sensing on the RoSCAR platform was per-

formed by the Asus Xtion Pro Live RGB-D sensor [11]. With
a resolution of 640 × 480 pixels, a 58◦ × 45◦ field of view,
and a frame rate of 30 fps, this sensor is commonly used for
tasks such as skeleton tracking, facial recognition, and object
detection. Figure 4 (left) depicts an Xtion sensor mounted
to the roof of a RoSCAR shell. The sensor is hinged, so its
gaze can be adjusted easily. In our case, it focused on the
ground in front of the RoSCAR to facilitate lane segmenta-
tion. Figure 4 (right) displays a point cloud taken from the

5

Figure 4: (Left) The Asus XtionPro RGB-D sensor is mounted on the roof of the RoSCAR shell. The sensor
provides 640 x 480 points at 30 fps (Right) Visualization of 3D point cloud with RGB color registered to
each point, taken from the view of a racing RoSCAR. Here, a second RoSCAR can be seen.

point of view of a RoSCAR, with RGB values registered to
each point.

In the context of RoSCAR, point clouds from the Xtion
sensor were analyzed to segment features using common im-
age processing techniques, such as color segmentation and
edge detection. The corresponding features were then ex-
tracted from the data provided by the depth sensor. Student
solutions included transforming point clouds in the sensor
frame, where lane markings intersect at a horizon line; to a
world frame, where lane markings are parallel lines. Then
lanes were segmented using image processing techniques.

2.5 Construction
Table 1 lists the various components of RoSCAR, ven-

dors from which they were purchased, and their prices as of
April 2014. Not included in this list is the cost of custom
machined parts, such as the motherboard mounting plate.
In this table, we draw a distinction between the base plat-
form, and the computing platform. This is to facilitate a
direct comparison between other educational platforms that
do not include a computing platform in their base price,
such as the iRobot Create. Total cost of the RoSCAR base
platform is $393.37, neglecting tax and shipping. By way of
comparison, the iRobot Create currently (as of April 2014)
sells for $220 with battery [5].

The cost of the computing platform with battery totals
$386.74, which is comparable to a netbook computer of sim-
ilar performance that might be used in conjunction with
other robot platforms. With the Asus Xtion at $169.99, the
total parts cost of the RoSCAR is $950.10. Not included in
this cost is the necessary labor to assemble the RoSCAR.

Instructions, diagrams, and downloadable CAD files nec-
essary to assemble a RoSCAR can be downloaded at our
website: http://vader.cse.lehigh.edu/roscar

3. SOFTWARE ARCHITECTURE
Because the processor architecture is x86, we have wide

latitude in what is installed on the on-board computer. In
a competition setting, competitors would be provided a uni-
versal set of drivers to access all sensors, and could choose
any middleware they are familiar with to complete the race,
such as ROS [12]. Our software architecture was developed
using lessons learned from the DARPA Urban Challenge
(DUC) as part of the Ben Franklin Racing Team (BFRT)
[8]. Software development for Little Ben, the BFRT entry,
was done in MATLAB. While the code bases of other com-
petitors using C++ or Java was measured in the 100,000s

of lines, Little Ben needed less than 5,000 lines of MATLAB
code to complete the 55 mile race. In this section, we detail
the software architecture, and the necessary components to
enable the car to run using MATLAB. All software detailed
herein ran on Ubuntu 12.04 64-Bit.

3.1 Inter-Process Communication
In the DUC, Little Ben was architected as a set of MAT-

LAB processes, each of which acted as producers and con-
sumers of data. These processes (often called “nodes”) cor-
responded to high-level tasks such as perception, control,
and planning, which were interfaced using an inter-process
communication library called the Spread Toolkit [13]. We
replicate this paradigm in RoSCAR, with some new modifi-
cations.

The Spread Toolkit is a C-library that allows a process
to broadcast messages over a network, or between nodes
running on the same computer. It works by running a cen-
tral Spread Daemon, which allows processes to subscribe to
a “topic”, which is just a channel of communication over
which messages are exchanged. Messages can be published
to a topic, and then received by every other process sub-
scribed to that topic. Since Spread exists as a C-library,
we used the MATLAB Executable (MEX) interface to wrap
Spread for access within MATLAB.

Aside from simply wrapping Spread, we extended its func-
tionality to facilitate rapid development of the aforemen-
tioned robot architecture, so students can focus on algo-
rithm development. We call this extension RoLAB, short
for Robot MATLAB. RoLAB takes the spread interface and
adds the following facilities:

• Implements an efficient serialization and deserializa-
tion protocol written in C, to handle the serialization
of MATLAB datatypes including multidimensional ar-
rays, doubles, ints, chars, strings, bools, and structs.

• Allows a programmer to specify whether a node pub-
lishes or subscribed to a topic.

• Handles message sorting and management within a
node.

• Allows a programmer to specify a node frequency at
which the node will check for new data or publish data
over the Spread network.

With MATLAB and RoLAB, defining a new node can be
accomplished in as few as 5 lines of code. This includes

6

Figure 5: Software architecture running on
RoSCAR. Perception and Control are separate
MATLAB processes and communicate via message
passing (dotted lines) to a Planning MATLAB pro-
cess. Each process communicates to hardware via
MEX wrappers.

instantiating the core RoLAB object (1 line of code), creat-
ing either a publisher or a subscriber (1 line of code), and
initializing the main node loop (3 lines of code).

3.2 Student Interface
Students had access to MATLAB, RoLAB, and MEX in-

terfaces to the hardware components including the Asus
Xtion, encoder, velocity control, and steering control. The
rest of the software architecture was left for them to design.
Students typically interfaced with the on-board computer
via an ad-hoc wireless network, which was indispensable for
testing this mobile robot platform. For more control over
the hardware, students also could connect a monitor and
keyboard to the on-board computer and access a desktop
environment, although this negated the mobility of the plat-
form.

Students were free to architect their RoSCAR as they
chose. An example software architecture is depicted in Fig-
ure 5. Here, the student-designed portions consist of a per-
ception node, a control node, and a planning node. The per-
ception node interfaced with the RGB-D camera via a MEX
wrapper, and filtered depth images to segment lane bound-
aries. These boundaries were transmitted to the planning
node via RoLAB (the dotted line). Using the lane bound-
aries, the planning node generated a global plan for the robot
to follow, which was transmitted to the control node. The
control node interfaced with the encoder, steering, and ve-
locity controls. It generated control signals to send to the
steering servos and DC motor in order to execute the plan
sent by the planning node.

The foregoing node architecture is simply one example
of how RoSCAR was designed by a student team. Thus,
the details of these node are omitted from this paper, be-
cause they necessarily vary from student to student. The
implementation of these nodes involves high-level percep-
tion algorithms which draw on the field of computer vision

and image processing; and control algorithms which use el-
ements of control theory and motion planning. How the
students develop their algorithms determine how well their
RoSCAR will perform in the race.

4. PILOT COURSE
To test the efficacy of RoSCAR as a robot platform suit-

able in a competition and educational environment, we used
an experimental course held at Lehigh University during the
fall semester of 2013. The course was comprised of advanced
undergraduates (junior/senior level) and graduate students
(masters/first year Ph.D.) who had previously participated
in an introduction to mobile robotics course. This pre-
requisite course focused on algorithms employed in mobile
robotics for navigation, sensing, and estimation. Topics in-
cluded common sensor systems, motion planning, robust es-
timation, Bayesian estimation techniques, Kalman and par-
ticle filters, and localization and mapping techniques. Three
undergraduate and four graduate students participated in
the RoSCAR course. The students were divided into three
teams of 2-3 students. Each team was given a RoSCAR plat-
form on which to develop over the semester. This section
details the structure and outcome of the course.

4.1 Curriculum
The course was project-based, where most class time was

allocated for development on the hardware platform. Incre-
mental development goals of increasing difficulty were as-
signed to the students throughout the semester, which cu-
mulatively prepared the teams to compete in a capstone race
at the Lehigh University Rauch Field House. These goals in-
cluded calibrating the steering servo, calibrating the RGB-D
camera, transforming point-clouds between frames of refer-
ence, segmenting lanes, following a straight track segment,
and following a curved track segment.

Rauch Field House, pictured in Figure 6, is a 5,760 m2

indoor track with ample space for field testing. Each lane of
the track is 1 m wide with a length of 200 m. The objective
of the final race was to circle the track while staying in their
respective lanes without violating any lane boundaries. The
large indoor environment served as a testing site for the plat-
form, as it was isolated from pedestrians and provided many
features to test the performance capabilities of RoSCAR.

Also visible in Figure 6 is substantial clutter on the track
surface, which made lane detection more challenging. This
necessitated not only robust segmentation algorithms, but
also filtering and tracking algorithms to make sure the ap-
propriate set of lane markings were followed. This clutter
ensured the proposed task was more challenging than build-
ing a simple line following robot.

4.2 Results
Here we present the results of the course and some ob-

servations on student performance. The results of the final
competition are presented in Table 2. All RoSCARs were
configured in training mode for the final exam. Impressively,
the first place team managed to max-out the speed of their
RoSCAR in training mode, with a best lap time of 35 sec-
onds. One interesting feature of the results is the spread
between the first place team and last place team, which had
a best lap time of 160 seconds. We believe this is due to the
layered design of the course; since each new benchmark de-
pended on successful completion of the previous benchmark,

7

Figure 6: (Left) A view from Rauch Field House. Total track length around the course was 200 m, which
is appropriate for the scale of the RoSCAR. (Right) Extraneous markings on the Rauch track necessitated
robust solutions to lane segmentation and tracking.

a team struggling with one component tended to fall be-
hind. After initial development of algorithms, teams worked
on incrementally increasing speed, which sometimes necessi-
tated the development of new algorithms as previous meth-
ods failed at higher speeds. Thus, a struggling team did not
have the opportunity for this fine-tuning phase.

Nonetheless, all three teams were able to complete at least
one lap around the track. A video of the final exam can be
viewed at: http://youtu.be/jwRjv3D7lGo.

Table 2: Final Race Results

Place Best Lap Time Average Speed Scaled Speed
1 35 seconds 5.7 m/s 202 km/h
2 46 seconds 4.5 m/s 162 km/h
3 160 seconds 1.25 m/s 45 km/h

5. FUTURE WORK
We have presented RoSCAR, a low-cost, high-performance

platform designed for educational and research use. From
the results of our experimental course, we believe RoSCAR
is ideal for bridging the gap between theory and practice
for advanced undergraduates and graduate students. How-
ever, we are only just beginning to realize the potential of
RoSCAR. In our experimental course, RoSCAR was tested
in training mode on a level surface. However, as Figure 3
shows, RoSCAR can attain speeds of nearly 17 m/s. Fur-
ther, while we have yet to test RoSCAR in an outdoor set-
ting, the Traxxas Slash Truck was originally designed as
a competitive off-road race car. With some modifications
to the sensor suite and the hardware housing, we expect
the RoSCAR platform could potentially perform effectively
outdoors as well.

6. ACKNOWLEDGMENTS
The authors would like to thank the following students

for their participation in the RoSCAR course: Tashwin Kaur
Khurana, Vikram Mehta, Jim O’Connor, Adam Schaub, and
Elton Wong. We also extend a special thanks to the Lehigh
University Department of Computer Science and Engineer-
ing for their generous financial support of this project. Fi-
nally, we would like to thank David Luksenberg for early
discussions about a Robot NASCAR course.

7. REFERENCES
[1] J. R. Croxell, R. Mead, and J. B. Weinberg,

“Designing robot competitions that promote ai
solutions: Lessons learned competing and designing,”
pp. 29 – 34, 2007.

[2] FIRST, “First robotics competition.” [Online].
Available:
http://www.usfirst.org/roboticsprograms/frc

[3] Brown ieee. Brown IEEE Robotics Competition.
[Online]. Available:
http://www.brown.edu/Departments/
Engineering/Organizations/Ieee/competition/

[4] T. College, “Trinity college fire fighting home robot
contest.” [Online]. Available:
http://www.trincoll.edu/events/robot/

[5] iRobot, “irobot create programmable robot.” [Online].
Available:
http://www.irobot.com/us/learn/Educators/
Create.aspx

[6] O. S. R. Foundation, “Turtlebot.” [Online]. Available:
http://www.turtlebot.com/

[7] G. Laboratory, “Mars, multiple autonomous robots.”
[Online]. Available:
http://www.cis.upenn.edu/mars/site/platforms.htm

[8] D. Cruz, J. McClintock, B. Perteet, O. A. Orqueda,
Y. Cao, and R. Fierro, “Decentralized cooperative
control,” IEEE Control Systems Magazine, pp. 58–78,
June 2007.

[9] Traxxas, “Slash, 1/10 scale pro 2wd short course race
truck.” [Online]. Available:
http://www.cis.upenn.edu/mars/site/platforms.htm

[10] MathWorks, “Matlab: The language of technical
computing.” [Online]. Available:
http://www.mathworks.com/products/matlab/

[11] A. C. Inc., “Xtion pro live.” [Online]. Available:
http://www.asus.com/Multimedia/Xtion PRO LIVE

[12] M. Quigley, K. Conley, B. P. Gerkey, J. Faust,
T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “Ros:
an open-source robot operating system,” in ICRA
Workshop on Open Source Software, 2009.

[13] S. C. LLC, “The spread toolkit.” [Online]. Available:
http://www.spread.org/

8

